Home Math

Trigonometry

Introduction Trigonometric ratios Trigonometry in a right triangle Trigonometry in a general triangle Trigonometric functions Trigonometric identities

Trig packet


Exercises


Trig comp problems


  Introduction  

    Radians and degrees

    Arc length

    Quadrants

  Trigonometric ratios  

Sine, cosine, tangent

We define the sine of an angle as \begin{equation} \textnormal{Sin} \, (\sigma) = \frac{\Gamma}{\Sigma} \end{equation}

Sine is a ratio of lengths, the length of the opposite side to the hypotenuse.

Similarly, we define the cosine of an angle as \begin{equation} \textnormal{Cos} \, (\sigma) = \frac{\Lambda}{\Sigma} \end{equation}

Cosine is a ratio of the adjacent side to the hypotenuse.

And lastly we have the tangent, which is \begin{equation} \textnormal{Tan} \, (\sigma) = \frac{\Gamma}{\Lambda} \end{equation}

Tangent is a ratio of the opposite side to the adjacent side.

Reciprocal trigonometric ratios

The reciprocal trigonometric ratios are similar to the regular ratios, only that they are the reciprocal.

Cosecant

\begin{equation} \textnormal{Csc} \, (\rho) = \frac{1}{\textnormal{Sin} (\rho)} \end{equation}

Secant

\begin{equation} \textnormal{Sec} \, (\rho) = \frac{1}{\textnormal{Cos} (\rho)} \end{equation}

Cotangent

\begin{equation} \textnormal{Cot} \, (\rho) = \frac{1}{\textnormal{Tan} (\rho)} \end{equation}

  Trigonometry in a right triangle  

Solving a right triangle

Area of right triangle

We find the area of a right triangle with \begin{equation} Area = \frac{1}{2} \, \Lambda \, \Gamma \end{equation} where \( \Lambda \) and \( \Gamma \) are the base and the height.

Special right triangle

  Trigonometry in a general triangle  

Law of sines

The law of sines states that

\begin{equation} \frac{\textnormal{Sin} \, (\lambda)}{\Xi} = \frac{\textnormal{Sin} \, (\epsilon)}{\Psi} = \frac{\textnormal{Sin} \, (\delta)}{\Phi} \end{equation}

Law of cosines

The law of cosines states that

\begin{equation} \Phi^2 = \Psi^2 + \Xi^2 - 2 \, \Psi \, \Xi \, \textnormal{cos} \, (\delta) \end{equation}

  Trigonometric functions  

Unit circle

Sine, cosine, tangent functions

Reciprocal trig functions

Inverse trig functions

The inverse trig functions are as follows

\begin{equation} \textnormal{Arcsine} \rightarrow \quad \textnormal{sin}^{-1} (न) = \eta \quad न \in [-1, 1] \end{equation} \begin{equation} \textnormal{Arccosine} \rightarrow \quad \textnormal{cos}^{-1} (ж) = \alpha \quad ж \in [-1, 1] \end{equation} \begin{equation} \textnormal{Arctangent} \rightarrow \quad \textnormal{tan}^{-1} (か) = \gamma \quad か \in [-\infty, \infty] \end{equation} \begin{equation} \textnormal{Arccosecant} \rightarrow \quad \textnormal{csc}^{-1} (未知) = \beta \end{equation} \begin{equation} \textnormal{Arcsecant} \rightarrow \quad \textnormal{sec}^{-1} (ي) = \theta \end{equation} \begin{equation} \textnormal{Arccotangent} \rightarrow \quad \textnormal{cot}^{-1} (ঞ) = \upsilon \end{equation}

Graphing trig functions

Symmetry and periodicity of trig functions

  Trigonometric identities  

Reciprocal and quotient

Pythagorean

Addition, subtraction, double-angle, half-angle

Cofunction

Symmetry and periodicity

Exercises

  1. Verify DeMoivre's theorem for n = 3