Exercises
Trig comp problems
Introduction
Radians and degrees
Arc length
Quadrants
Trigonometric ratios
Sine, cosine, tangent
We define the sine of an angle as \begin{equation} \textnormal{Sin} \, (\sigma) = \frac{\Gamma}{\Sigma} \end{equation}
Sine is a ratio of lengths, the length of the opposite side to the hypotenuse.
Similarly, we define the cosine of an angle as \begin{equation} \textnormal{Cos} \, (\sigma) = \frac{\Lambda}{\Sigma} \end{equation}
Cosine is a ratio of the adjacent side to the hypotenuse.
And lastly we have the tangent, which is \begin{equation} \textnormal{Tan} \, (\sigma) = \frac{\Gamma}{\Lambda} \end{equation}
Tangent is a ratio of the opposite side to the adjacent side.
Reciprocal trigonometric ratios
The reciprocal trigonometric ratios are similar to the regular ratios, only that they are the reciprocal.
Cosecant
\begin{equation} \textnormal{Csc} \, (\rho) = \frac{1}{\textnormal{Sin} (\rho)} \end{equation}Secant
\begin{equation} \textnormal{Sec} \, (\rho) = \frac{1}{\textnormal{Cos} (\rho)} \end{equation}Cotangent
\begin{equation} \textnormal{Cot} \, (\rho) = \frac{1}{\textnormal{Tan} (\rho)} \end{equation}Trigonometry in a right triangle
Solving a right triangle
Area of right triangle
We find the area of a right triangle with \begin{equation} Area = \frac{1}{2} \, \Lambda \, \Gamma \end{equation} where \( \Lambda \) and \( \Gamma \) are the base and the height.
Special right triangle
Trigonometry in a general triangle
Law of sines
The law of sines states that
\begin{equation} \frac{\textnormal{Sin} \, (\lambda)}{\Xi} = \frac{\textnormal{Sin} \, (\epsilon)}{\Psi} = \frac{\textnormal{Sin} \, (\delta)}{\Phi} \end{equation}Law of cosines
The law of cosines states that
\begin{equation} \Phi^2 = \Psi^2 + \Xi^2 - 2 \, \Psi \, \Xi \, \textnormal{cos} \, (\delta) \end{equation}Trigonometric functions
Unit circle
Sine, cosine, tangent functions
Reciprocal trig functions
Inverse trig functions
The inverse trig functions are as follows
\begin{equation} \textnormal{Arcsine} \rightarrow \quad \textnormal{sin}^{-1} (न) = \eta \quad न \in [-1, 1] \end{equation} \begin{equation} \textnormal{Arccosine} \rightarrow \quad \textnormal{cos}^{-1} (ж) = \alpha \quad ж \in [-1, 1] \end{equation} \begin{equation} \textnormal{Arctangent} \rightarrow \quad \textnormal{tan}^{-1} (か) = \gamma \quad か \in [-\infty, \infty] \end{equation} \begin{equation} \textnormal{Arccosecant} \rightarrow \quad \textnormal{csc}^{-1} (未知) = \beta \end{equation} \begin{equation} \textnormal{Arcsecant} \rightarrow \quad \textnormal{sec}^{-1} (ي) = \theta \end{equation} \begin{equation} \textnormal{Arccotangent} \rightarrow \quad \textnormal{cot}^{-1} (ঞ) = \upsilon \end{equation}Graphing trig functions
Symmetry and periodicity of trig functions
Trigonometric identities
Reciprocal and quotient
Pythagorean
Addition, subtraction, double-angle, half-angle
Cofunction
Symmetry and periodicity
Exercises
- Verify DeMoivre's theorem for n = 3