\begin{equation} W = \vec{ \textbf{F}} \cdot \vec{ \textbf{s}} \qquad ( \textnormal{constant force, straight-line}) \tag{7.1} \end{equation} \begin{equation} W = s \, F \, \textnormal{cos} \,\gamma \qquad ( \textnormal{constant force, straight-line}) \tag{7.2} \end{equation} \begin{equation} W = \int \vec{ \textbf{F}} \cdot \vec{ \textbf{s}} \qquad ( \textnormal{constant force, any path}) \tag{7.3} \end{equation} \begin{equation} W_{net} = \Delta K \qquad ( \textnormal{Relation between work and kinetic energy}) \tag{7.4} \end{equation} \begin{equation} W_{net} = \Delta K = \int \vec{ \textbf{F}} \cdot \vec{ \textbf{s}} \qquad ( \textnormal{Work and kinetic energy}) \tag{7.5} \end{equation} \begin{equation} W_{net} = \Delta K = \int \vec{ \textbf{F}} \cdot \vec{ \textbf{s}} = 1/2 \, m v^2 \qquad ( \textnormal{Work and kinetic energy}) \tag{7.6} \end{equation} \begin{equation} W_{net} = \int_{x_1}^{x_2} F_x \, dx \qquad ( \textnormal{Varying x component of force, straight line}) \tag{7.7} \end{equation} \begin{equation} W_{net} = \int \vec{ \textbf{F}} \cdot \vec{ \textbf{s}} = \int F_{||} \, ds = \int F \, \textnormal{cos} \, \lambda \, ds \qquad ( \textnormal{Work done on a path}) \tag{7.8} \end{equation} \begin{equation} P = \frac{W}{t} \qquad (\textnormal{Power}) \tag{7.9} \end{equation} \begin{equation} P_{avg} = \frac{\Delta W}{\Delta t} \qquad (\textnormal{Average power}) \tag{7.10} \end{equation} \begin{equation} P_{\textnormal{inst}} = \lim_{\Delta t\to 0} \frac{\Delta W}{ \Delta t} = \frac{dW}{dt} \qquad (\textnormal{Instantaneous power}) \tag{7.11} \end{equation} \begin{equation} P = \frac{W}{t} = \frac{ \vec{ \textbf{F}} \, \cdot \vec{ \textbf{s}} }{t} = \vec{ \textbf{F}} \cdot \vec{ \textbf{v}} \qquad (\textnormal{Power}) \tag{7.12} \end{equation}
Next module Potential energy and energy conservation