\begin{equation} \Phi_E = \oint \vec{E} \cdot d\vec{A} = \oint E_{\perp} \, dA = \oint E \textnormal{ cos } \tau \, \, dA \end{equation}
\begin{equation} \oint_S \vec{E} \cdot dA = \frac{Q_{enc}}{\epsilon_0} \end{equation}
\begin{equation} E = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \end{equation}
\begin{equation} E = \frac{1}{2 \pi \epsilon_0} \frac{\eta}{r} \end{equation}
\begin{equation} E = \frac{\mu}{2 \epsilon_0} \end{equation}
\begin{equation} E = \frac{\xi}{\epsilon_0} \end{equation}
Outside shell, r > R \begin{equation} E = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \end{equation}
Inside shell, r < R \begin{equation} E = \, \, ... 0 \end{equation}
Outside sphere, r > R \begin{equation} E = \frac{1}{4 \pi \epsilon_0} \frac{q}{r^2} \end{equation}
Inside sphere, r < R \begin{equation} E = \frac{1}{4 \pi \epsilon_0} \frac{q \, r}{R^3} \end{equation}
Outside cylinder, r > R \begin{equation} E = \frac{1}{2 \pi \epsilon_0} \frac{\kappa}{r} \end{equation}
Inside cylinder, r < R \begin{equation} E = \, \, ... 0 \end{equation}