\begin{equation} I_{rec \, avg} = \frac{2}{\pi} I \approx 0.637 \, I \qquad \textnormal{(Rectified average current)} \end{equation} \begin{equation} I_{rms} = \frac{I}{\sqrt{2}} \qquad \textnormal{(RMS current)} \end{equation} \begin{equation} V_{rms} = \frac{V}{\sqrt{2}} \qquad \textnormal{(RMS voltage)} \end{equation}
\begin{equation} V_R = I \, R \end{equation} \begin{equation} V_L = I \, X_L \end{equation} \begin{equation} V_C = I \, X_C \end{equation}
\begin{equation} i = I \textnormal{ cos } \omega \, t \end{equation} \begin{equation} v = V \textnormal{ cos } (\omega \, t + \rho) \end{equation}
\begin{equation} V = I \, Z \qquad \textnormal{(Voltage, z = impedance)} \end{equation} \begin{equation} Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + [\omega L - \frac{1}{\omega C}]^2} \qquad \textnormal{(Impedance)} \end{equation} \begin{equation} \textnormal{ tan } \kappa = \frac{\omega L - 1/\omega C}{R} \end{equation}
\begin{equation} \omega_0 = \frac{1}{\sqrt{LC}} \end{equation}
\begin{equation} P_{avg} = \frac{1}{2} V \, I \textnormal{ cos } \chi = V_{rms} \, I_{rms} \textnormal{ cos } \chi \end{equation}
\begin{equation} \frac{V_2}{V_1} = \frac{N_2}{N_1} \qquad \textnormal{(Voltage to turn ratio)} \end{equation} \begin{equation} \frac{V_1}{I_1} = \frac{V_2}{I_2} \qquad \textnormal{(Voltage to current proportion)} \end{equation}