Home


Physics

Electricity and Magnetism 1


E and M 1 packet


Math for electricity and magnetism 1.


Electrostatics


Special techniques


Electric fields in matter


Magnetostatics


Magnetic fields in matter


Equations

\begin{equation} \textbf{F} = \frac{1}{4 \pi \epsilon_0} \frac{q_1 \, q_2}{r^2} \, \hat{\textbf{r}} \tag{1.1} \end{equation} \begin{equation} \textbf{F} = \textbf{F}_1 + \textbf{F}_2 + \textbf{F}_3 \, + ... = \frac{1}{4 \pi \epsilon_0} \left( \frac{Q \, q_1}{r_a^2} \hat{\textbf{r}}_a + \frac{Q \, q_2}{r_b^2} \hat{\textbf{r}}_b + \frac{Q \, q_3}{r_c^2} \hat{\textbf{r}}_c + \: ...\right) \end{equation} \begin{equation} = \frac{Q}{4 \pi \epsilon_0} \left( \frac{q_1}{r_a^2} \hat{\textbf{r}}_a + \frac{q_2}{r_b^2} \hat{\textbf{r}}_b + \frac{q_3}{r_c^2} \hat{\textbf{r}}_c + \, ...\right) \end{equation}

Which is to say

\begin{equation} \textbf{F} = Q \textbf{E} \tag{1.2} \end{equation}

with

\begin{equation} \textbf{E} = \frac{1}{4 \pi \epsilon_0} \sum_{i=1}^n \frac{q_i}{r_i^2} \hat{\textbf{r}}_i \tag{1.3} \end{equation} * Taken from Intro to Electrodynamics, Griffiths